

PCMCIA 2.1 Compliant FLASH Memory Cards - 1 to 8 Megabyte AMD C Series 5 Volts Only Operation

Description

These FMJ Storage products are high quality PCMCIA 2.1 compliant Type II FLASH memory cards which operate in a 5 Volt only environment. FLASH technology assures data retention without the need for battery back-up of any kind, even when system power is removed.

These products offer memory capacities from 1 to 8 Megabytes with a 64 Kbyte block erase resolution. Memory blocks that are not busy with program/erase operations, may be accessed by both read and write commands without concern for ongoing operations in other blocks. Additionally data may be handled in either 8 bit or 16 bit bus modes. \These features make FMJ Storage memory cards especially desirable for a wide variety of custom applications that utilize PCMCIA slots such as PDAs and other handheld devices.

Features

- PCMCIA 2.1 compliant
- FLASH Architecture, nonvolatile memory
- Single Supply Voltage Operation (5V ±5%)
- Standard 200 ns Access Time from Standby
- Byte-wide and Word-wide access
- Embedded Program/Erase Algorithms
- Erase Suspend/Resume Feature
- 64 Kilobyte Sector Erase Resolution
- High Write Endurance 100,000 Write/Erase Cycles Min.
- WP Switch to Prevent Accidental Data Loss
- Dedicated Attribute Memory EE PROM
- TYPE II PCMCIA
- ISO 9001 Quality Controls

PIN DESCRIPTION

Signal	Name	Function					
A[25:0]	Address Bus	Address Inputs, A25-A0					
D[15:0]	Data Bus	Data Input/Outputs					
/OE	Output Enable	Active Low for Read					
/WE	Write Enable	Active Low for Write					
/CE1	Card Enable Low Byte	Active Low for Read/ Write Even Byte					
/CE2	Card Enable High Byte	Active Low for Read/ Write Odd Byte					
/REG	Register Select	Active Low to enables Attribute Memory					
WP	Write Protect	Output Signal indicates the WP switch state					
/VS1, /VS2	Voltage Sense 1, 2	Voltage Sense Outputs (both open = $5V$ card)					
/CD1, /CD2	Card Detect Signals 1, 2	Tied to GND					
V _{CC}	Power Supply	Power Supply Voltage, +5.0V ±5%					
GND (V _{SS})	Ground	Card Ground					

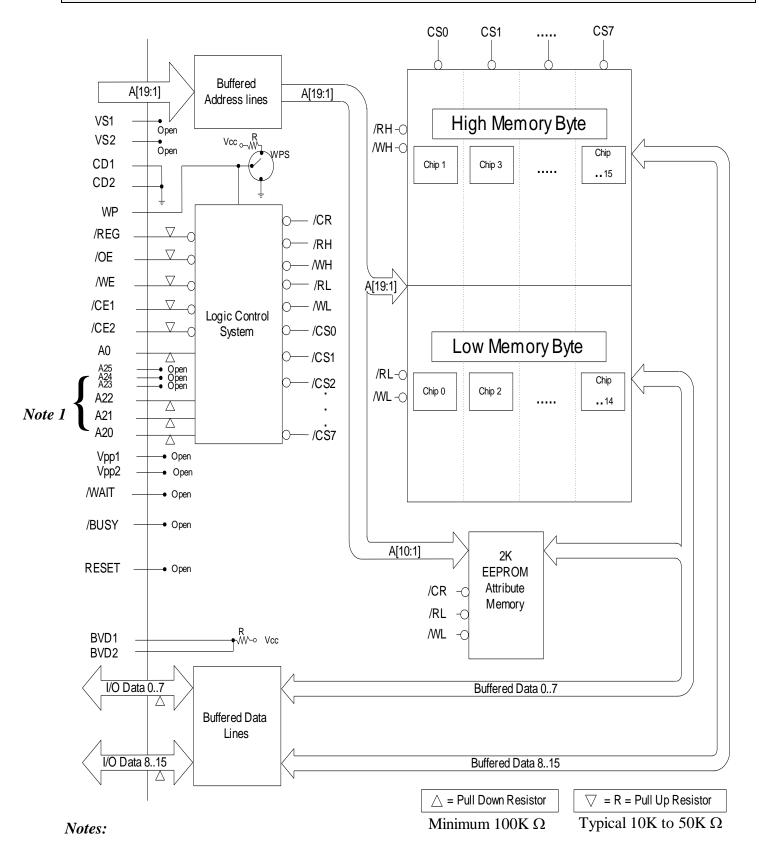
PIN ASSIGNMENTS

Pin #	Signal	I/O	Function		Pin #	Signal	I/O	Function	
1	GND		Ground		35	GND		Ground	
2	D3	I/O	Data Bit 3	PL	36	/CD1	0	Card Detect - Grounded	
3	D4	I/O	Data Bit 4	PL	37	D11	I/O	Data Bit 11	PL
4	D5	I/O	Data Bit 5	PL	38	D12	I/O	Data Bit 12	PL
5	D6	I/O	Data Bit 6	PL	39	D13	I/O	Data Bit 13	PL
6	D7	I/O	Data Bit 7	PL	40	D14	I/O	Data Bit 14	PL
7	/CE1	Ι	Card Enable Low byte	PH	41	D15	I/O	Data Bit 15	PL
8	A10	Ι	Address Bit 10		42	/CE2	Ι	Card Enable High byte	PH
9	/OE	Ι	Output Enable	PH	43	/VS1		VS1 Sense Signal 1- Open	
10	A11	Ι	Address Bit 11		44	RFU		Reserved For Future Use	NC
11	A9	Ι	Address Bit 9		45	RFU		Reserved For Future Use	NC
12	A8	Ι	Address Bit 8		46	A17	Ι	Address Bit 17	
13	A13	Ι	Address Bit 13		47	A18	Ι	Address Bit 18	
14	A14	Ι	Address Bit 14		48	A19	Ι	Address Bit 19	
15	/WE	Ι	Write Enable	PH	49	A20	Ι	Address Bit 20 (Note 1)	PL
16	/BUSY	0	Ready Busy Signal	NC	50	A21	Ι	Address Bit 21 (Note 2)	PL
17	V _{CC}		Power Supply		51	V _{CC}		Power Supply	
18	Vpp1		Program Voltage 1	NC	52	Vpp2		Program Voltage 2	NC
19	A16	Ι	Address Bit 16		53	A22	Ι	Address Bit 22 (Note 3)	PL
20	A15	Ι	Address Bit 15		54	A23	Ι	Address Bit 23 (Note 4)	NC
21	A12	Ι	Address Bit 12		55	A24	Ι	Address Bit 24 (Note 5)	NC
22	A7	Ι	Address Bit 7		56	A25	Ι	Address Bit 25 (Note 6)	NC
23	A6	Ι	Address Bit 6		57	/VS2		VS2 Sense Signal 2- Open	
24	A5	Ι	Address Bit 5		58	RESET	Ι	Hardware RESET	NC
25	A4	Ι	Address Bit 4		59	WAIT	0	Wait State Control (Note 7)	NC
26	A3	Ι	Address Bit 3		60	RFU		Reserved For Future Use	NC
27	A2	Ι	Address Bit 2		61	/REG	Ι	Register Select	PH
28	A1	Ι	Address Bit 1		62	/BVD2	0	Batt. Voltage Detect 2	PH
29	A0	Ι	Address Bit 0	PL	63	/BVD1	0	Batt. Voltage Detect 1	PH
30	D0	I/O	Data Bit 0	PL	64	D8	I/O	Data Bit 8	PL
31	D1	I/O	Data Bit 1	PL	65	D9	I/O	Data Bit 9	PL
32	D2	I/O	Data Bit 2	PL	66	D10	I/O	Data Bit 10	PL
33	WP	0	Write Protect		67	/CD2	0	Card Detect - Grounded	
34	GND		Ground		68	GND		Ground	

Notes:

- 1. Not Connected for cards of 1 Megabyte capacity or lower.
- 2. Not Connected for cards of 2 Megabyte capacity or lower.
- 3. Not Connected for cards of 4 Megabyte capacity or lower.
- 4. Not Connected for cards of 8 Megabyte capacity or lower.
- 5. Not Connected for cards of 16 Megabytes capacity or lower.
- 6. Not Connected for cards of 32 Megabytes capacity or lower.
- 7. There are not wait states generated by these cards. This Signal must be pulled by the Host socket.

Legend :


I = Input to card only

- O = Output from card only
- I/O = Bi-directional signal
- PH = Pulled High (10 50K Typ.)
- PL = Pulled Low (100K Min.)
- NC = Not Connected

Functions of the shaded pins are not used.

FUNCTIONAL BLOCK DIAGRAM

FMJ Storage, Inc. www.fmjstorage.com 206-605-1394

1. See Notes 1, 2, 3, 4, 5 and 6 under Pin Assignment regarding utilized address lines.

COMMON MEMORY BUS OPERATIONS

Operation		/REG	/CE2	/CE1	/OE	/WE	A0	D8-D15	D0-D7
READ									
Read Even (x8)		Н	Н	L	L	Н	L	High -Z	Data Out-Even
Read Odd (x8)	(Note 1)	Н	Н	L	L	Н	Н	High -Z	Data Out-Odd
Read Odd (x8)		Н	L	Н	L	Н	Х	Data Out-Odd	High-Z
Read Word (x16)		Н	L	L	L	Н	Х	Data Out-Odd	Data Out-Even
WRITE/ERASE									
Write Even (x8)		Н	Н	L	Н	L	L	High -Z	Data In-Even
Write Odd (x8)	(Note 1)	Н	Н	L	Н	L	Η	High -Z	Data In-Odd
Write Odd (x8)		Н	L	Н	Н	L	Х	Data In-Odd	High-Z
Write Word (x16)	(Note 2)	Н	L	L	Н	L	Х	Data In-Odd	Data In-Even
INACTIVE									
Card Output Disable		Х	Х	Х	Н	Х	Х	High-Z	High-Z
Standby		Х	Н	Н	Х	Х	Х	High-Z	High-Z

Notes:

- 1. Byte access Odd. In this x8 mode, $A0 = V_{IH}$ outputs or inputs the "odd" byte (high byte of the x16 word on D0 D7). This is accomplished internal to the card by transposing D8-D15 to D0-D7.
- 2. During 16-bit write and erase operations one IC of a device pair may complete the operation prior to the other. It is therefore necessary to monitor the card busy signal or poll both components before considering the operation complete.

Legend:

$$H = V_{IH}$$

$$L = V_{IL}$$

$$X = Don't Care$$

ATTRIBUTE MEMORY BUS OPERATIONS

Pins/Operation	/REG	/CE2	/CE1	/OE	/WE	A0	D8-D15	D0-D7
READ (Note 1)								
Read Even (x8)	L	Н	L	L	Н	L	High -Z	Data Out-Even
Read Odd (x8) (Note 2)	L	Н	L	L	Н	Η	High -Z	Data Out-Odd Not Valid
Read Odd (x8) (Note 2)	L	L	Н	L	Н	Х	Data Out-Odd Not Valid	High-Z
Read Word (x16) (Note 2)	L	L	L	L	Н	Х	Data Out-Odd Not Valid	Data Out-Even
WRITE (Note 1)								
Write Even (x8)	L	Н	L	Н	L	L	High -Z	Data In-Even
Write Odd (x8) (Note 3)	L	Н	L	Н	L	Н	High -Z	Data In-Odd Not Valid
Write Odd (x8) (Note 3)	L	L	Н	Н	L	Х	Data In-Odd Not Valid	High-Z
Write Word (x16)	L	L	L	Н	L	Х	Data In-Odd Not Valid	Data In-Even
(Note 3)								
INACTIVE								
Card Output Disable	X	Х	X	Н	Х	Х	High-Z	High-Z
Standby	Х	Н	Н	Х	Х	Х	High-Z	High-Z

Note:

- 1. Refer to the data sheets for the Microchip 28C16A EEPROM for details on programming the attribute memory.
- $H = V_{IH}$ 2. Data Read operations will produce data information that has no valid $L = V_{IL}$ X = Don't Care

Legend:

meaning for the Odd byte of information. 3. Data Write operations may be initiated, however data information for the Odd byte will not be stored.

Warning: Raising address lines to voltages levels above CMOS levels, is not permitted. Applying voltages above these levels will destroy the card. Any attempt to identify memory components in this way is not permitted.

PIN DESCRIPTIONS

Vcc Card Power Supply

Power input required for device operation. The Vcc must be $5.0 \text{ V} \pm 5\%$ (4.75V to 5.25V).

GND Card Ground

The VSS pins of all IC components and related circuitry are connected to this card ground, which must be connected to the Host system's ground.

NC Not Connected

These pins are physically not connected to any circuitry.

A0-A25 Address Bus

These signals are address input lines that are used for accesses to card memory. A0 is used to select the odd or even bank of memory components. A20 through A22 select which Device Pair of ICs will be accessed. A1 through A19 are used to select the specific address that is to be accessed on an individual memory component. A25, A24, and A23 are Not Connected.

(See also PIN ASSIGNMENTS Notes 1 - 6).

D0-D15 Data (Input/Output) Bus

Data lines D0 through D15 are used to transfer data to and from the card. When memory is not selected or outputs are disabled data lines are placed in a high impedance state.

/OE Output Enable Signal

This active low input signal enables memory devices to activate data lines and output data information.

/WE Write Enable Signal

This active low input signal controls memory write functions and is used to strobe data into the card memory.

WP

Write Protect Signal

This output signal indicates whether or not card write operations have been disabled by the Write Protect Switch (WPS). When the signal is asserted high, card write operations are disabled. When this signal is asserted low, the card write operations function normally.

/CE1, /CE2 Card Enable

These are active low inputs used to enable the card memory. /CE1 accesses the low bank of memory which provides storage for even numbered bytes. /CE2 accesses the high bank of memory which provides storage for odd numbered bytes. During byte-wide operations these Card Enable signals are used in conjunction with address line A0 to access even or odd bytes of data. The memory card is deselected and power consumption is reduced to standby levels when both /CE1 and /CE2 are driven high.

PIN DESCRIPTIONS

(CONTINUED)

/REG Register Select Signal

This active low input signal enables access to the Attribute memory EEPROM. Attribute memory is typically used to store the CIS file, which contains specific card information. Access to common memory is not possible when /REG is asserted low.

RESET RESET Signal

This is an active high input signal that normally is used by the Host to place the card in the deep power down mode of operation. On these cards this signal is Not Connected.

/WAIT Extended Bus Cycle

This active low output signal is used by the card to delay completion of a memory access operation. There are no wait states generated by these memory cards. For this reason the /WAIT signal is left open. It is the responsibility of the Host to pull this signal high to prevent false activation.

/BUSY Ready Busy Signal

This active low output signal normally indicates that at least one memory device in the card is busy performing a task. On these cards this signal is Not Connected.

/CD1, /CD2 Card Detect

These pins are tied directly to ground and are used by the Host system to detect the presence of the card. If /CD1 and /CD2 are not both detected low by the Host, then the card is not properly inserted.

/VS1, /VS2 Voltage Sense Signals

The Voltage Sense Signals notify the socket of the card's Vcc requirements on initial power up. When both /VS1 and /VS2 are open, as is the case on these cards, the card is identified to the Host system as a 5V only card.

/Vpp1, /Vpp2 Program and Peripheral Voltages

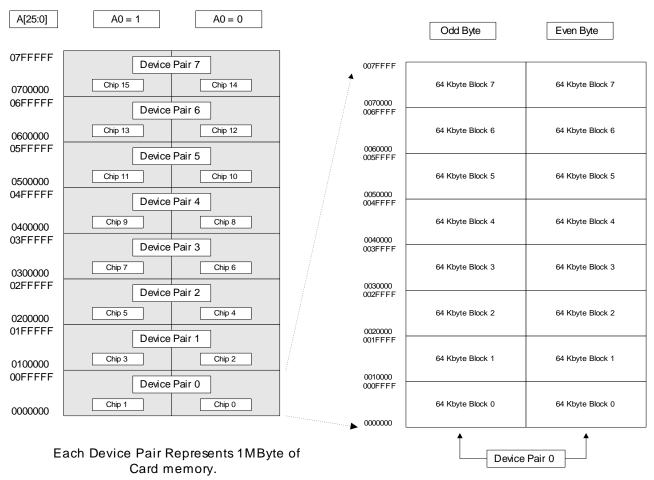
These signals are normally used to supply additional programming voltages for memory devices that require programming voltages other than the Vcc supply. This memory card requires only Vcc voltages. Therefore, Vpp1 and Vpp2 are Not Connected.

/BVD1, /BVD2 Battery Voltage Detect

These pins are normally used to indicate the status of an internal card battery. Since FLASH cards do not require or use a battery, these signals are internally pulled high by a resistor.

MANUFACTURER'S IDENTIFICATION CODE TABLE

		Hex I	Data	Operational Voltages
Device	Manufacturer	Manufacturer Code	Device Code	Vcc
Am29F040D	Utilizes AMD	01h	A4h	$5V \pm 5\%$
AMD Device	29F040 ID			
ID				


The component manufacturer and device ID codes of each common memory component may be read from the Card Information Structure (CIS), or directly from each memory device. The CIS file is located in the Attribute Section of the card memory. Typically the CIS is stored in the EEPROM.

Directly reading the IDs from a memory component may be done by initiating the embedded Auto select Command (See COMMAND DEFINITIONS Table for command sequence and codes). Once the appropriate command sequence codes have been written to a device, a read operation at chip address 00000h will return the Manufacture ID code and a read at 00001h will return the device ID code for the specific component use on the Card. This mode may only be exited by initiating valid read command operation.

For complete details of these memory devices refer to the manufacturers published data sheets.

CARD COMMON MEMORY MAP

Each 4Mbit memory chip is segmented into 8 equally spaced 64 Kbyte blocks

ATTRIBUTE MEMORY MAP

A0 = 1	A0 = 0	1	The CIS file is located of the card me	
			Odd	Even
	Wrap to 2K EEPROM Range Wrap to 2K EEPROM Range Wrap to 2K EEPROM Range Wrap to 2K EEPROM Range	000F	FF Memory Locations Not Valid	CIS Card Information Structure FILE
	Wrap to 2K EEPROM Range Wrap to 2K EEPROM Range Wrap to 2K EEPROM Range	Attribute The El Address	e Memory Wrap around ad every 2K increment EPROM is deactivated, w es above 008000h wrap at	ts. henever A14 = 1. round to the same
	A0 = 1	Wrap to 2K EEPROM Range Wrap to 2K EEPROM Range	OOOOF Wrap to 2K EEPROM Range Wrap to 2K EEPROM Range	the card me Odd Odd Odd Odd Odd Odd Odd Odd Odd Od

COMMAND DEFINITIONS TABLE

All Address ar	All Address and Data values are in Hexadecimal unless otherwise noted. Addresses (Addr) are chip ,not card, addresses.											ses (A	.ddr) ar	e chip	,not ca	ard, ad	dresse		
		1 st B	1 st Bus Write 2 nd Bus Write		/rite	3 rd B	3 rd Bus Write		4 th Bus Write		5 th Bus Write		rite	6 th Bus Write		rite			
Embedded		(Cycle		(Cycle		(Cycle			Cycle			Cycle		Cycle		:
Command	Bus	Addr	Da	ata	Addr	D	ata	Addr	Da	ata	Addr	D	ata	Addr	Da	ata	Addr	Da	ata
Sequence	Cyc.		Evn	Odd		Evn	Odd		Evn	Odd		Evn	Odd		Evn	Odd		Evn	Odd
Read/Reset	1*	XXXX	F0	F0															
Read/Reset	4	5555	AA	AA	2AAA	55	55	5555	F0	F0	RA	RH	RL						
Autoselect	4	5555	AA	AA	2AAA	55	55	5555	90	90	XX00	01	01						
Manf. ID																			
Autoselect	4	5555	AA	AA	2AAA	55	55	5555	90	90	XX01	A4	A4						
device ID																			
Word Write	4	5555	AA	AA	2AAA	55	55	5555	A0	A0	PA	PH	PL						
Device	6	5555	AA	AA	2AAA	55	55	5555	80	80	5555	AA	AA	2AAA	55	55	5555	10	10
Erase																			
Sector	6	5555	AA	AA	2AAA	55	55	5555	80	80	5555	AA	AA	2AAA	55	55	SA	30	30
Erase																			
Sector Erase Su	ase SuspendXXXB0B0Erase can be suspended during sector erase with Addr (don't care), Data (B0B0h)																		
Sector Erase Re			30	30	Erase	can be i	resumed	l after sus	spend w	vith Add	dr (don't	care), D	ata (3030	Dh)					

Note:

*

Operation available after a card power reset, or after write/erase operations have completed.

Write protect must not be enabled for proper command operations. Address bits A19-A11 are Don't Care for all commands except for Read Address (RA), Program Address (PA), and Sector Address (SA). For any word operation both the Even and Odd byte device must be made active through the control line settings. Refer to the Memory Bus Operations Table for control line settings for various operation modes.

Legend:

X = Any valid address with in a memory device

It should be noted that addresses are latched on the falling edge of the /WE pulse and that data is latched on the rising edge of /WE (See CARD TIMING CHARACTERISTICS).

CARD ADDRESS VS. CHIP ADDRESS CALCULATIONS

Specific memory addresses may be calculated by the following method;

Card Address	Chip Address	Device Pair Number	Chip Memory Capacity	Binary Shift Left by 1 bit	A0 = 0 = Even byte A0 = 1 = Odd byte	
A [25 : 0] =	(Addr +	(DP# *	80000h)) * 2)	+ A0	

Where: Addr = Chip addresses.

DP# = the device pair number that the memory device belongs to (see Common Memory Map).

A0 = Card address line used for access to even or odd byte of memory.

COMMAND DEFINITIONS TABLE

(CONTINUED)

Reset / Read Command:

Cards may be read in Byte-Wide or Word-Wide modes. In Word-Wide mode, each byte of memory is independently read from each device pair. Each memory device in the card may read at different rates. Therefore, the Host should wait until each byte has a valid data output (See MEMORY BUS OPERATIONS Table for specific Control line States and CARD TIMING CHARACTERISTICS for timing information).

Upon power reset of the Card, each memory chip automatically powers up in the Read/Reset state in order to prevent spurious data changes during power up and does not require an additional Read command in order to begin reading data from memory at this time. This operation mode can also be initiated by writing the Read/Reset Command (See Command Definitions Table). The device remains enabled for read operations until another command is written.

Data reads may also be performed during the Sector Erase Suspend operation. This state is known as the Pseudo Read state. For further details see Sector Erase Suspend and Data Polling.

Standby Mode of Operation:

During any operation only certain memory devices are active. Those that are not involved in a specific operation and are not directly made active by control signals can be placed into a reduced power mode by setting the /CE1 and /CE2 signals to a high logic state. Data output bits are then placed in a high-impedance state independent of /OE. If a device is deselected during block erase, byte write or lock-bit operations, the device continues functioning normally until the operation is completed then enters the Standby Mode (See MEMORY BUS OPERATIONS Table for specific control line states see also CARD DC CHARACTERISTICS for the standby current value).

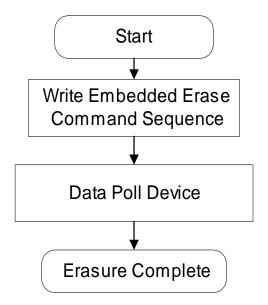
Each chip may be brought out of standby mode and made active by setting the chip enable signals to a low logic value.

COMMAND DEFINITIONS TABLE

(CONTINUED)

Embedded Device Erase Command:

Upon executing the Embedded Erase command sequence, the addressed memory device automatically writes and verifies the entire sector(s) for an all "0" data pattern, at which point a self timed chip erase-and-verify begins. The erase and verify operations are complete when the data on D7 (D15 on the odd byte) of the memory device is "1". At which time the device returns to the read mode.


The system is not required to provide any control or timing during these operations. If a power reset occurs while the erase operation is in progress, the erase operation will stop, and the data in that device will be undefined. Note that for the device erase or sector erase operation, Data Polling may be performed at any address in that device or sector (See Polling Operations).

A system designer has the following choices when initiating the Embedded Erase command:

- The Host may keep the sector address valid during the entire Embedded Erase operation.
- Once the system has initiated the Embedded Erase command sequence, the Host may remove the address from the device and perform other tasks. (When the Host comes back to poll the device, it must reassert the same address.)

Embedded Erase Algorithm Description Table and Diagram:

Bus	Command	Comments
Operations		
Standby		Wait for V _{CC} ramp
Write	Embedded Erase	6 Bus Cycle
	Command sequence	operations
Read		Data Poll to verify
		completion

COMMAND DEFINITIONS TABLE

(CONTINUED)

Sector Erase Command:

The sequence of six command codes for executing a Sector Erase may be seen in the COMMAND DEFINITIONS Table. The sector address and the command data are both internally latched on board each memory device. Sector Erase will begin 100µs after the rising edge of the last sector erase command.

During the 100µs time-out period, multiple sectors may be queued for concurrent erase. Queuing of multiple sectors is accomplished by writing the six bus cycle operation commands sequence, followed with writes of the sector erase command 30h to addresses in other sectors desired to be concurrently erased. The system is not required to provide any controls or timing during these operations and any command other than Sector Erase within the time-out window will reset the device to the read mode.

If a power reset occurs after the device has begun executing this command, the erase operation will be halted and the data in the sector will be undefined. The automatic sector erase terminates when the data on D7 (D15 on the odd byte) is "1". Data polling must be performed at an address within any of the sectors being erased.

Sector Erase Suspend/Resume:

Sector Erase Suspend command allows the Host to interrupt the erase operation of the chip and then do data reads (pseudo-read) from a non-busy sector. The chip will take between 0.1µs to 10µs to suspend the erase operation and go into erase suspended read mode.

This mode is only available during the Sector Erase operation and will be ignored during other command operations. Writing this command during the Sector Erase 100μ s time-out period will result in immediate suspension of the Sector Erase operation.

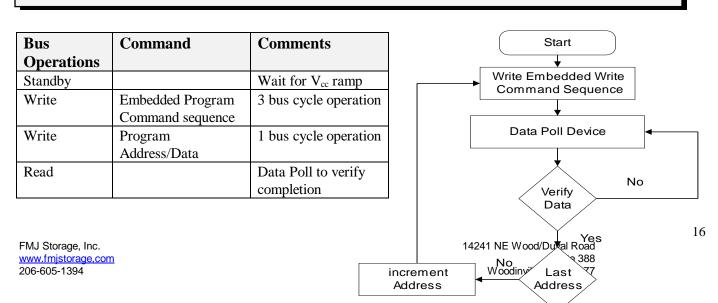
Once the device has entered the Sector Erase Suspend mode, any further writes of the command (B0h) at this time will be ignored. Any attempt to initiate other commands during the Erase Suspend mode window will reset the device to read mode. In order to resume the Sector Erase operation, the Resume command (30h) should be written to the suspended device.

Note that the Host system must keep track of what state the chip is in by monitoring D6 (D14 on the odd byte) to determine if a chip has entered the pseudo-read mode (See Polling Operations for Toggle Bit D6).

COMMAND DEFINITIONS TABLE

(CONTINUED)

Embedded Program Command:


The Embedded Program setup consists of four command codes (See COMMAND DEFINITIONS TABLE). Once the Embedded Program commands are written the next /WE pulse causes a transition to an active programming operation (See CARD TIMING CHARACTERISTICS). The Host system is not required to provide further control timing the device will automatically provide an adequate internally generated write pulse and verify margin.

When the automatic programming operation is completed, the device returns to the Read mode and the data on D7 (D15 on the odd byte) is equivalent to the data written.

In Word-Wide mode, each byte is independently programmed on each memory device pair. Because each device may reach completion of the programming operation at different times, software polling should continue to monitor each byte for write completion and data verification.

A system designer has the following choices when initiating the Embedded Programming command:

- The Host may keep the address valid during the entire Embedded Programming operation.
- Once the system has initiated the Embedded Program command sequence, the Host may remove the address from the device and perform other tasks. (When the Host comes back to poll the device, it must reassert the same address.)

Embedded Program Algorithm Description Table and Flow Chart:

COMMAND DEFINITIONS TABLE

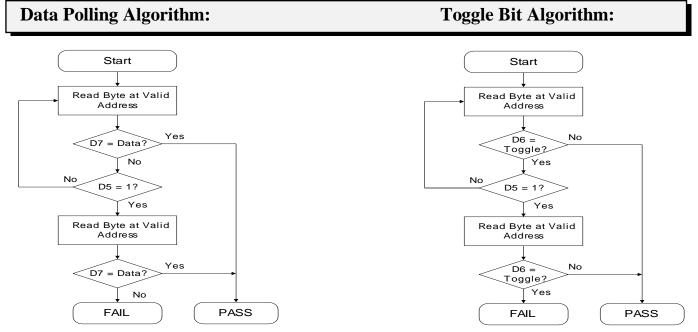
(CONTINUED)

Polling Operations:

Polling is a method to indicate to the Host system that the Embedded algorithms are either in progress or complete and these is only active during the Embedded Programming or Erase modes of operation.

Data Polling Bit D7 (D15 on the odd byte)

During an embedded programming cycle, any attempt to read from a device will produce the complement of expected valid data on D7. While an embedded erase cycle is being performed, D7 (D15 on the odd byte) will read "0" until the erase is completed. Upon completion of the erase operation the data on D7 (D15 on the odd byte) will read "1".


Even if D7 that the device has completed the embedded operation, the other data bits of the byte D0-D6 may still be invalid since the switching time for each data bit will not be the same. The valid data will be provided only after a certain time delay (> t_{GLQV}) (See CARD TIMING CHARACTERISTICS).

Toggle Bit D6 (D14 on the odd byte)

During an Embedded Program/Erase Algorithm cycle, successive attempts to read (/OE toggling) data from the device at any address will result in D6 (D14 on the odd byte) toggling between logical one and zero. Once the Embedded Program/Erase Algorithm cycle is complete, D6 (D14 on the odd byte) will stop toggling and valid data will be read on the next successive attempt. (See Command Status Flags Table)

Time Limit Exceeded Bit D5 (D13 on the odd byte)

Time Limit Exceeded indicates a failure of the performed operation, and is identified by the D5 bit set to logical one.

Notes:

FMJ Storage, Inc. www.fmjstorage.com 206-605-1394

- 1. D7 is rechecked if D5 = 1 because D7 may change simultaneously with D5.
- 2. D6 is rechecked if D5 = 1 because D7 may change simultaneously with D5
- 3. Bits D7, D6, and D5 correspond to bit D15, D14, and D13 on the odd byte respectively.

COMMAND DEFINITIONS TABLE

(CONTINUED)

Command Status Flags Table:

Operation	(Note 1)	Operation Status	D7	D6	D5	D3
Embedded Program Co (Byte Program)	ommand	IP	/D7	Toggle	0	0
Embedded Erase Com	mand	IP	0	Toggle	0	1
Sector Erase Suspend		IP	1	1	0	0
Sector Erase Suspend		IP	Data	Data	Data	Data
Sector Erase Suspend	-	IP	/D7	Toggle (Note 2)	0	1
Embedded Program Co (Byte Program)	ommand	TLE (Note 3)	/D7	Toggle	1	0
Program/Erase Embed	ded Erase Command	TLE (Note 3)	0	Toggle	1	1
Sector Erase Suspend	Program	TLE (Note 3)	/D7	Toggle	1	1

Note:

- 1. Data Bits [7:0] of the Low Byte corespond to the same Data bits [15:8] of the High Byte.
- 2. Performing successive read operations from <u>any</u> address will cause D6 to toggle.
- 3. *Time Limit Exceeded indicates a failure of the performed operation, and is identified by the D5 bit.*

Legend:

- *IP* = *Command is In Process*
- *TLE* = *Time Limits Exceeded*
- N/A = Address of the memory sector to be erased.

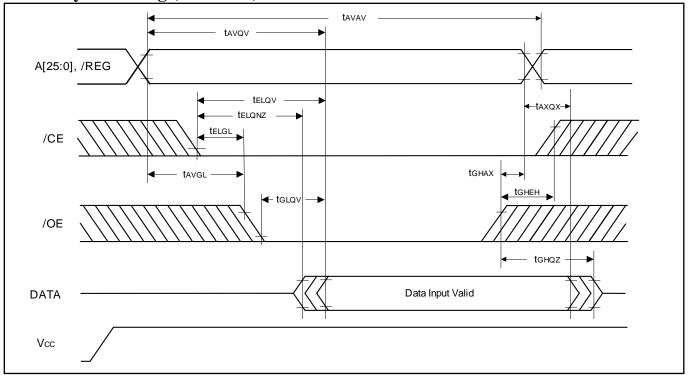
CARD TIMING CHARACTERISTICS

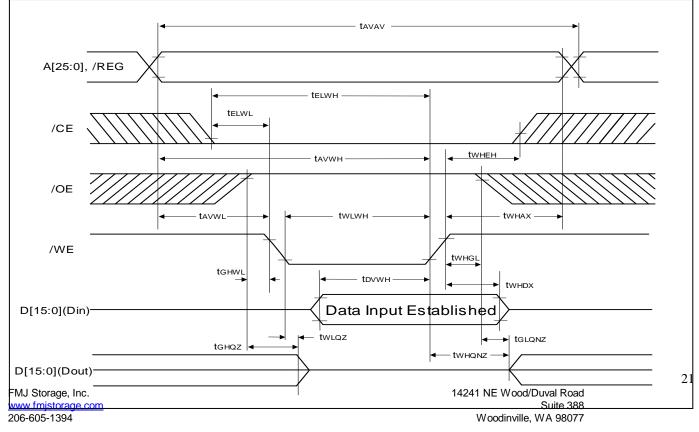
(Standard operating times for both Common and Attribute Memory unless otherwise noted.)

Read Cycle Timing (/WE = V_{HI})

Parameter	Symbol	Min	Max	Units
Read Cycle Time	t _{AVAV}	200		ns
Address Access Time	t _{AVQV}		200	ns
Card Enable Access Time	t _{ELQV}		200	ns
Output Enable Access Time	t _{GLQV}	125		ns
/OE High to Data Output Disable	t _{GHQZ}		90	ns
/CE Low to Data Output Enable	t _{ELQNZ}	5		ns
Address change to Data no longer valid	t _{AXQX}	0		ns
Address Setup to /OE Low time	t _{AVGL}	20		ns
/OE High Setup to Address time	t _{GHAX}	20		ns
/CE Low Setup to /OE Low time	t _{ELGL}	0		ns
/OE High to /CE High Hold time	t _{GHEH}	20		ns

Write Cycle Timing (/OE = V_{HI})


Parameter	Symbol	Min	Max	Units
Write Cycle Time	t _{AVAV}	200		ns
Write Pulse Width	t _{WLWH}	120		ns
Address Setup Time for /WE Low	t _{AVWL}	20		ns
Address Setup to /WE High	t _{AVWH}		140	ns
Card Enable Setup to /WE Low	t _{ELWH}	140		ns
Data Setup to /WE High	t _{DVWH}	60		ns
Data Hold from /WE High	t _{WHDX}	30		ns
Address Hold from /WE High	t _{WHAX}	30		ns
Data Output Disable Time form /WE Low	t _{WLQZ}		90	ns
Data Output Disable Time form /OE Low	t _{GHQZ}		90	ns
/WE High time to Data Output Enable	t _{wHQNZ}	5		ns
/OE Low time to Data Output Enable	t _{GLQNZ}	5		ns
/OE High to /WE Low Setup time	t _{GHWL}	10		ns
/WE High to /OE Low Hold time	t _{WHGL}	10		ns
/CE Low to /WE Low Setup time	t _{ELWL}	0		ns
/WE High to /CE High Hold time	t _{WHEH}	20		ns


CARD TIMING CHARACTERISTICS

(CONTINUED)

Common and Attribute Memory Read and Write Cycle Timing. **READ Cycle Timing (/WE=VIH)**

Write Cycle Timing (/OE=V_{IH})



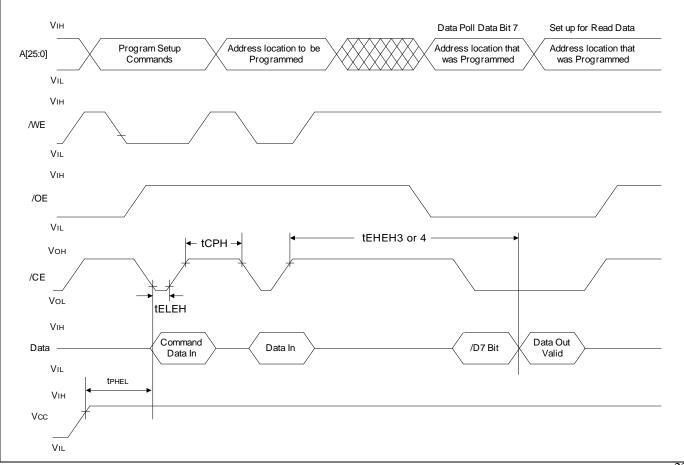
CARD TIMING CHARACTERISTICS (NOTE 1) (CONTINUED)

WRITE OPERATIONS AND DATA POLLING TIMING DIAGRAM

/WE controlled write timings and data polling.

Item	Symbol	Min	Тур	Max	Units
Power (VCC) High Recovery to /CE Going Low	t _{PHEL}	50			μs
Write Pulse Width	t _{WLWH}	80			ns
Write Pulse Width Hold High	t _{WPH}	85			ns
Chip Embedded Program Operations	t _{wHWH}		16		μs
				48	ms

FMJ Storage, Inc. www.fmjstorage.com 206-605-1394

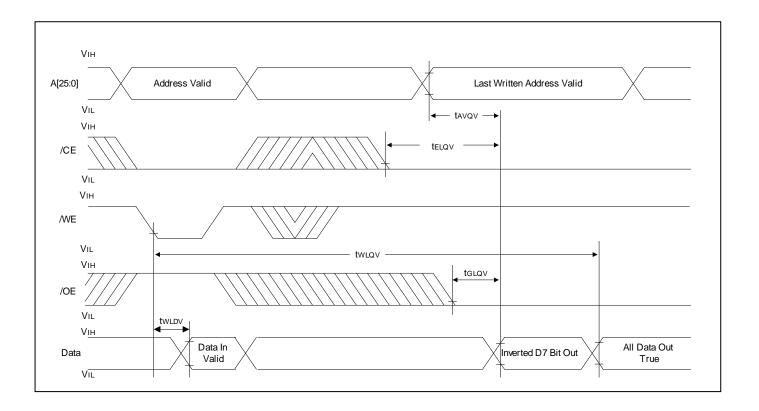

CARD TIMING CHARACTERISTICS

(CONTINUED)

WRITE OPERATIONS AND DATA POLLING TIMING DIAGRAM

Alternate /CE controlled write timings and data polling.

Item	Symbol	Min	Тур	Max	Units
Power (VCC) High Recovery to /CE Going Low	t _{PHEL}	50			μs
Enable Pulse Width	t _{ELEH}	65			ns
Enable Pulse Width Hold High	t _{CPH}	50			ns
Chip Embedded Program Operations (Note 1, 2)	t _{EHEH1}	16			μs
				48	ms
Chip Embedded Erase Operations for (Note 3, 4)	t _{EHEH2}	1.5			S
each 64K byte memory sector					


FMJ Storage, Inc. www.fmjstorage.com 206-605-1394

CARD TIMING CHARACTERISTICS

(CONTINUED)

ATTRIBUTE MEMORY TIMING DIAGRAM

Attribute Parameter	(Note 1, 2)	Symbol	Min	Max	Unit
Read Cycle Time		t _{AVAV}	200		ns
Card Enable Access Time		t _{ELQV}		200	ns
Output Enable Access Time		t _{GLQV}		70	ns
Write Enable Low to Data Valid	Time	t _{WLDV}		1000	ns
Write Enable Low to Data Read	Valid Time	t _{WLQV}		1	ms

Note:

1. All timing values are constant with standard Read/Write Times, unless otherwise shown in the Table.

2. Attribute memory latches address values on the falling edge of /WE. Data is latched on the rising edge of /WE.

Attribute Data Polling Mode:

Data Polling, the 28C16A features /DATA polling to signal the completion of a byte write cycle. During a write cycle, an attempt to read the last byte written to memory will produce the complement of the D7 (D6 to D0 are indeterminate). After completion the true data is available. Data Polling allows a simple read/compare operation to determine the status of the chip.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min.	Max.	Units
Vcc Supply Voltage	Vcc	4.75	5.25	V
Operating Temperature	T _A	-10	70	°C

DC CHARACTERISTICS

Supply current is an RMS value. Typical values at nominal V_{CC} voltage at $T_A = +25$ °C.

Symbol	Parameter	Condition	Min	Max	Units
I _{CCS}	Standby Current	Per device:		0.7	mA
	(Note 2)	CMOS; $V_{CC} = V_{CC} Max$, $V_{IN} = GND$ to V_{CC}			
		$/CE1, /CE2, = V_{CC} \pm 0.2V$			
I _{CCR}	Active Read Current	CMOS; $V_{CC} = V_{CC} Max$		45	mA
	(Note 1, 2)	/CE1 or /CE2 = GND Byte (×8)			
		$I_{OUT} = 0mA$, at $f = 3.3MHZ$		90	mA
		Byte (×16)			
I _{CCW}	Active Program Current	Per device: $/CE1$ or $/CE2 = GND$		65	mA
	(Note 1, 3)	(including programming current)			
I _{CCE}	Active Sector Erase	Per device:		50	mA
	Current (Note 3)	(including programming current)			
IIL	Input Leakage Current	$V_{IN} = GND$ to V_{CC} , $V_{CC MAX}$	-300	+20	μΑ
		Per Pin:			•
I _{ILpu}	Input Leakage Current	$V_{IN} = GND$ to V_{CC} , $V_{CC MAX}$		+500	μA
•	with Pull Up Resistor	Per Pin with $10K\Omega$ pull up resistor			
I _{ILpd}	Input Leakage Current	$V_{IN} = GND$ to V_{CC} , $V_{CC MAX}$		-50	μA
•	with Pull Down Resistor	Per Pin with $100 \text{K}\Omega$ pull down resistor			
I _{OLpd}	Output Leakage Current	$V_{OUT} = GND$ to V_{CC} , $V_{CC MAX}$		± 20	μA
•	with Pull Down Resistor	Per Pin with 100K Ω pull down resistor			•
V _{IL}	Input Low Voltage		-0.5	0.8	V
	(Note 3)				
V _{IH}	Input High Voltage		$0.7 \times V_{CC}$	V _{CC} +0.3	V
	(Note 3)				
V _{OL}	Output Low Voltage	$V_{CC} = V_{CC} Min$		0.40	V
		$I_{OL} = 3.22 \text{ mA}$			
V _{OH}	Output High Voltage	CMOS; $V_{CC} = V_{CC}$ Min	3.8	V_{CC}	V
	(Note 3)				

		$I_{out} = 2.0 \text{ mA}$			
V _{LKO}	Low V_{CC} (Lock-Out)		3.2	4.2	V

Notes:

- 1. I_{CCWS} and I_{CCES} are specified with the device deselected. If read or written while in erase suspend mode, the device's current is the sum of I_{CCWS} or I_{CCWS} and I_{CCR} or I_{CCW} .
- 2. CMOS inputs are either VCC $\pm 0.2V$ or GND $\pm 0.2V$.
- 3. Sample tested by component manufacturer.

CARD INFORMATION STRUCTURE

The CIS is data which describes the PCMCIA card and is described by the PCMCIA standard. This information can be used by the Host system to determine a number of things about the card that has been inserted. For information regarding the exact nature of this data, and how to design Host software to interpret it, refer to the PCMCIA standard Metaformat Specification.

Physical <u>Address</u>	Logical <u>Address</u>	Data <u>Value(s)</u>		Tuple Description
Address	Address	<u>value(3)</u>		
00h	00h	01h		CISTPL_DEVICE
02h	01h	03h		CISTPL_LINK
04h	02h	52h		Speed = 200ns, WPS=Yes, FLASH
06h	03h	1Eh	(Note 1)	Bits $2-0 = 110b = 2$ Meg units,
				Bits 7-3 = 00011b = 4 Units (0=1, 1=2)
				2 Meg x 4 = 8 Meg size
08h	04h	FFh		CISTPL_END - End of Tuple
0Ah	05h	18h		CISTPL_JEDEC
0Ch	06h	03h		CISTPL_LINK
0Eh	07h	89h		Manufacturer ID (AMD)
10h	08h	A6h		Device ID (Am29F040)
12h	09h	FFh		CISTPL_END - End of Tuple
14h	0Ah	1Eh		CISTPL_DEVICEGEO
16h	0Bh	07h		CISTPL_LINK
18h	0Ch	02h		DGTPL_BUS - Bus Width - 2 Bytes
1Ah	0Dh	11h		DGTPL_EBS - Erase Block Size
				2^10h = 64K Bytes or Words
1Ch	0Eh	01h		DGTPL_RBS - Byte Accessible
1Eh	0Fh	01h		DGTPL_WBS - Byte Accessible
20h	10h	01h		DGTPL_PART - One Partition
22h	11h	01h		DGTPL_HWIL - No Interleave
24h	12h	FFh		CISTPL_END - End of Tuple

Note:

1. Refer to the table (right) for FMJ Storage part umbers and corresponding data value.

FMJ Storage, Inc. www.fmjstorage.com 206-605-1394

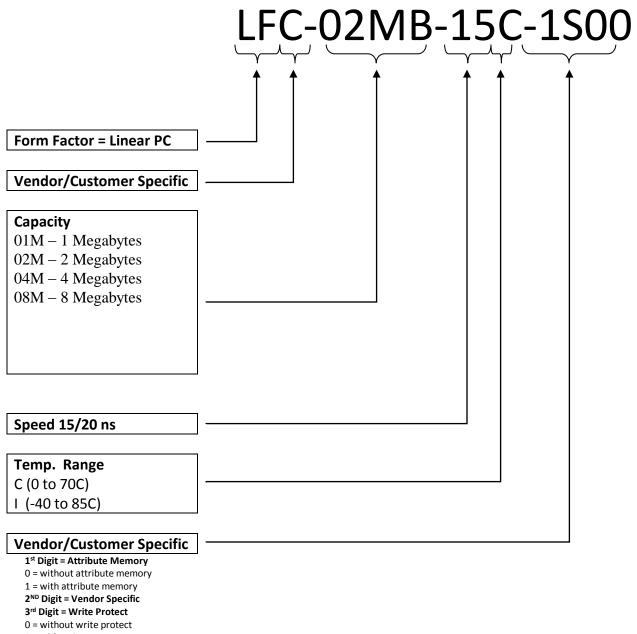
CARD INFORMATION STRUCTURE

(CONTINUED

Physical <u>Address</u>	Logical <u>Address</u>	Data <u>Value(s)</u>	Tuple Description
26h	13h	15h	CISTPL_VERS1
28h	14h	54h	CISTPL_LINK
2Ah	15h	04h	TPLLV1_MAJOR (PCMCIA 2.1/JEIDA 4.2)
2Ch	16h	01h	TPLLV1_MINOR
2Eh66h	17h33h	46 4d 4a 20 53 74 6f 72 61 67 65 2c 20 49 6e 63 2e 0d 0a	ASCII Text is : FMJ Storage, Inc. {19 Characters total}
68h	34h	00	NULL String Delimiter (String 1)
6Ah84h	35h42h	4c 46 4c 2d 38 4d 42 2d 31 35 43 2d 31 53 30 30	ASCII Text is : (Note 2) LFL-8MB-15C-1S00 {16 Characters total}
86h	43h	00	NULL String Delimiter (String 2)
88hCAh	44h65h	30 38 20 4D 45 47 20 46 4C 41 53 48 20 20 20 20 20 20 20 20	ASCII Text is : (Note 3) 08 MEG FLASH {34 Characters total}
CCh	66h	00	NULL String Delimiter (String 3)
CEh	67h	00	NULL String Delimiter (String 4)
D0h	68h	FF	CISTPL_END - End of Tuple

|--|

Notes:


2. Specific Product description will be listed (See Note 1 Part Numbers).

3. Specific Product memory capacities will be listed for specific products.

5.0 Ordering Information

The following describes the part number ordering nomenclature from FMJ Storage.

- 4th Digit = AMD series
- 1 = C series 2 = D series

• Available In Type II PCMCIA only

© Copyright 2013, FMJ Storage Inc. All Rights Reserved

AMD is a registered trademark of AMD Corporation. All other trademarks, registered trademarks, and service marks are the property of their respective owners.

The information contained in this document has been carefully checked and is believed to be reliable. However, FMJ Storage Inc. assumes no responsibilities for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by FMJ Storage Technologies, Inc.

FMJ Storage, Inc. reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of FMJ Storage, Inc.